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Molecular modeling of proteinlike inclusions in lipid bilayers: Lipid-mediated interactions
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We investigated the insertion of transmembrane structures in a lipid bilayer and their interactions using
self-consistent field theory. The lipids are coarse-grained on a united-atom level and consist of a phosphati-
dylcholinelike headgroup and two hydrophobic tails. The inclusions, acting as simple models for proteins that
span biological membranes, are rigid rods (radius R) with a hydrophobic surface and hydrophilic end caps. The
insertion free energy () of an individual rod is strongly regulated by the affinity between its hydrophobic
surface and the lipid tails. This affinity also controls the best match of the hydrophobic length of the rod with
that of the bilayer. The line tension 7(={)/27R) is practically independent of R. The perturbations in the bilayer
as a function of distance from the inclusion, have the shape of a damped oscillation. The wavelength and decay
length are related to the elastic properties of the bilayer and do not depend on R. These results are used to
analyze how the lipid matrix affects the interaction between transmembrane objects, for computational reasons
considering the limit of R — . Contributions on different length scales can be distinguished: (i) a long-range
elastic interaction, which is an exponentially decaying oscillation; (ii) an exponentially decaying repulsion on
an intermediate length scale, resulting from the loss of conformational entropy of the lipid tails; and (iii) a
short-range interaction due to the finite compressibility of the lipid tails, which manifests either as a depletion
attraction if there is no affinity between the tails and the inclusions’ surface or, otherwise, as an oscillatory

structural force.
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I. INTRODUCTION

The organization of transmembrane structures, such as
peptides and proteins, in a biological membrane is deter-
mined by many factors. A well studied and important aspect,
which we addressed in an earlier paper [1], is the hydropho-
bic mismatch, i.e., the difference between the length of the
hydrophobic part of the transmembrane structure and the
thickness of the hydrophobic part of the unperturbed bilayer.
When there is such a mismatch, the bilayer will adapt its
structure to avoid contact between hydrophobic parts and
water. The mismatch issue is of key importance for the func-
tioning and activity of various integral membrane-bound pro-
teins and peptides, as has been shown in several experimen-
tal studies [2-11]. Hydrophobic mismatch and the insertion
energy have been explored thermodynamically and experi-
mentally in particular for alpha helices, using the translocon
channel of the endoplasmic reticulum where most membrane
proteins get inserted into lipid membranes, thereby providing
the hydrophobicity scale for amino acids [12,13]. In addition,
a significant theoretical effort has already been undertaken to
gain insight into the physical aspects of the embedding of
proteins and peptides in lipid bilayers. A review in this area
is given by Sperotto et al. [14]. In some of the studies in-
volved, the elasticity theory developed by Helfrich [15] has
been extended to get phenomenological insight into the en-
ergetic and structural consequences of the hydrophobic mis-
match [16-21]. An important addition to this elasticity
theory was the chain directors model, which accounts for the
conformational restrictions of the lipid chains in the vicinity
of the inclusion that determine local deformations of the bi-
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layer [22]. In other studies [23,24], including our own, de-
tailed statistical mechanical models are used. In these models
molecular interaction forces and the hydrocarbon chain con-
formations are taken into account. The model that we use
and that of, e.g., Fattal and Ben-Shaul [25] have much in
common. However, our approach is somewhat more ad-
vanced as we impose no a priori positional constraints on the
individual lipids.

In our previous paper [1] we described the structural per-
turbations of inserting a rigid inclusion in a tensionless bi-
layer. It was found that the free energy of insertion is at a
minimum at a small negative hydrophobic mismatch, i.e.,
when the hydrophobic thickness of the inclusion is some-
what smaller than that of the bilayer. The bilayer perturba-
tions have an oscillating character and decay exponentially
with distance to the inclusion. The wavelength of the oscil-
lations as well as the decay length that we found are the same
as follow from elasticity theory.

In this paper we will first address the effect of the radius
of a rigid cylindrical object on the bilayer perturbation and
the free energy of insertion. This is highly interesting from a
biological point of view, since transmembrane peptides and
proteins vary substantially in size (from about 0.5 to 5 nm).
For example, the radius of beta barrels, i.e., beta sheets that
form closed, rigid structures in membranes (commonly
found in porins and other proteins that span cell membranes),
varies depending on the number of S-strands in the structure
[26]. The effect of the size of a transmembrane object on the
lipid bilayer structure has been studied before [27-29].
Schmidt er al. [30] report on a dissipative particle dynamics
study wherein they show that proteins can aggregate in the
bilayer due to a hydrophobic mismatch. Lagiie er al. [28,29]
investigated the influence of the radius of rigid cylinders,
using molecular dynamics in combination with statistical
mechanical integral equation theory. Around these rigid ob-
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jects on different length scales distinct bilayer perturbations
were found. Their complex results call for complementary
approaches directed to unravel this, not in the least because
such bilayer perturbations are important for interactions be-
tween transmembrane structures. Our self-consistent field
(SCF) method is suitable to do such a job, especially for the
properties on the nanometer length scale and above. In addi-
tion, we will consider the effect of nearest-neighbor interac-
tions (the chemical affinity) between the lipid tail segments
and the inclusion and show that these largely determine the
free energy of insertion. Until now not much is known about
the role of such interactions, since in most theoretical studies
it has been assumed that the lipids freely adjust their confor-
mation to overcome any “interaction” mismatch and possible
nearest-neighbor interactions have been tacitly left out the
analysis.

Another important motive to first determine the effect of
the radius of the inclusion on the lipid bilayer is related to
the main subject of this paper, that is on how the lipid bilayer
mediates the interaction between transmembrane objects.
Due to computational reasons we focus on the interaction
between two flat walls, mimicking large inclusions. By ig-
noring the curvature of inclusions, we can make use of the
symmetry and cast the problem in a two-gradient SCF analy-
sis.

In the past a number of studies has been performed to get
insight into the phenomenon of lipid-mediated interactions in
bilayer membranes [22,28,29,31-40]. In most of these stud-
ies the elasticity theory was used [33,34,37-39], but also a
molecular field theory was applied [22,31], as well as the
phenomenological Landau theory [32], and some Monte
Carlo [36] and molecular dynamics simulations [28,29]. In
all of these studies however there was no effective adsorp-
tion of the lipid tails to the inclusion’s surface. As mentioned
above, we will also consider the nearest-neighbor interac-
tions between the tail segments and the inclusions, and we
will show that these play an important role in the interaction
between two transmembrane objects. Our method is compu-
tationally inexpensive and numerically very accurate so we
can obtain systematic predictions for the complex problem of
lipid-mediated interactions.

II. THEORY AND METHODS

Molecular modeling of densely packed molecular assem-
blies such as lipid bilayers is an active branch of science.
Ideally one would like to compute for a given model (the
architecture of the molecules and the set of interactions) the
exact partition function. However, for such complicated sys-
tems these are not available. In such a situation one can
choose between two distinctly different approaches. A first
route is to use the molecular model in an appropriate simu-
lation, e.g., Monte Carlo or molecular dynamics. Even
though one will not estimate the partition function in this
approach (and hence can not easily compute the entropy, free
energies etc.), structural information is accurately obtained
by averaging along a simulation trajectory. Here we are in-
terested not only in structural but also in thermodynamic
information and thus we do not choose to follow the simu-
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lation route. A second route, applied in this paper, is to make
use of so-called mean field approximations and compute a
mean-field free energy. We do this by following the self-
consistent field formalism. The current SCF model has been
successfully used to study self-assembling structures, such as
bilayers, micelles and vesicles [1,41-43].

In this model the molecules present in the system are
coarse-grained on the united atom level, i.e., they consist of
segments, which are the basic building blocks. Excluded-
volume interactions between pairs of segments are replaced
by the interaction of a single segment with an external po-
tential field, which is the basic approximation in mean-field
theory. This potential field u,(r) contains all the potential
energy contributions to bring a segment A from the bulk
solution to position r.

To facilitate the numerical evaluation the 3d space is rep-
resented by a lattice; segments of molecules are restricted to
sit on lattice sites. All segments have the same volume as a
lattice site. Such a lattice allows us to accurately and effi-
ciently account for the different conformations of chainlike
and branched molecules.

Obviously, the potential field experienced by each seg-
ment is determined by the segment density profiles, i.e., the
spatial distributions of all types of segments over the system,
and vice versa. The target of SCF modeling is to find the
optimal self-consistent combination of segment density pro-
files and potential fields. This is done by optimizing the
Helmholtz energy F of the system, which is a functional of
all potentials u, and volume fractions ¢y,

Flung] = ke TS i — 3 S 1y (1) () + F o],
i Q,[H] r A

(1)

In this expression the first two terms represent the entropic
contribution, in which Q; is the single (chainlike) molecule
partition function and C; a normalization constant [44]. The
third term stands for the enthalpic contribution.

The Helmbholtz energy is coupled to the partition function
Q(n,V,T) through F=kgT In Q(n,V,T), where n,V,T stands
for fixed total numbers of molecules of each type n;, a given
volume of the system and a given temperature, respectively;
kg is the Boltzmann constant. Thus, optimizing F with re-
spect to u, and ¢, for all coordinates and segment types,
with the boundary condition that X, @A (r)=1, gives

JF nksTd In Q; ~
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This set of equations, which is the basis of any self-
consistent field theory, specifies how to calculate the segment
density profiles from the segment profiles and vice versa. A
numerical algorithm is used to find the corresponding sys-
tem, better known as the self-consistent field solution. From
analysis of the density profiles the structural properties of the
system can be found, while the thermodynamic properties
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FIG. 1. The two lattice geometries applied in this paper. In both
coordinate systems two gradients in densities and potentials can be
accounted for. The arrows point in the directions of these gradients.
We use r=(x,z) in the flat and r=(r,z) in the cylindrical case.

follow directly from differentiation of the Helmholtz energy
[45].

Details on the modeling of lipid bilayers and the effect of
rigid transmembrane inclusions can be found in our previous
paper [1]. Here we give only the key characteristics. In this
particular study two-gradient (2G) flat and cylindrical coor-
dinate systems as shown in Figure 1 are used that allow us to
study the laterally inhomogeneous lipid bilayers. The two
gradients in the molecular structure are perpendicular to the
surface of the bilayer and perpendicular to the surface of the
inclusion (in the plane of the bilayer). For the investigation
of the effect of the radius R of the inclusion on the free
energy of insertion and on the lipid bilayer structure we
make use of the 2G cylindrical coordinate system. Unless the
focus is on confinement issues, the system size is chosen
large enough so that at its boundaries in the radial, r, direc-
tion the effect of the inclusion has vanished and in the z
direction the bulk solution has become homogeneous. The
lipid-mediated interactions between two inclusions have
been calculated on the 2G flat lattice.

As told, the SCF method includes a mean-field simplifi-
cation. This means that the actual position of segments in the
y direction for 2G flat and for the sites in a given shell in 2G
cylindrical are averaged over, while keeping track of the
fraction of sites occupied for each segment type @,(z,x) or
@a(z,r) for the flat and cylindrical cases, respectively. At the
same time interactions between pairs of segments are re-
placed by the interaction of a single segment with a potential
field u,(r), with r=(z,x) in 2G flat and r=(z,r) in 2G cy-
lindrical geometry. As it follows from optimizing the free
energy with respect to the segment distributions, the poten-
tial field is a function of the volume fractions [cf. Eq. (3)],

un(r) = u' (r) + kg7, xapl{@p(r)) — ob] (4)
B

where u’(r) is the excluded-volume potential which arises
from the incompressibility constraint 2, @, (r)=1. In other
words, it is the energy needed to generate a vacant site at
position r to insert segment A. The second term accounts for
the nonideal interactions of segment A with all other segment
types, denoted by B. The Flory-Huggins nearest-neighbor
exchange energy parameter is denoted by x,g. It accounts
for the interaction between segment A and segment B and is
negative when the AA and BB interactions are energetically
unfavorable compared to the AB interactions and positive
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when it is the other way around (resulting in an effective
attraction or repulsion between A and B, respectively). The
parameter ¢g is the volume fraction of B and the superscript
b refers to the bulk solution, i.e., the aqueous solution at
large distance from the bilayer. The angular brackets repre-
sent a local average. Equation (7) is used to compute the
potentials from the volume fractions.

As explained above, the SCF machinery also needs the
inverse, i.e., we have to compute the volume fractions from
optimizing the free energy with respect to the segment po-
tentials. It will be clear that this problem is in general much
more involved as it needs information of all possible spatial
configurations of the molecules. For very short molecules, it
is feasible to generate all possible conformations of the mol-
ecules on the lattice (this may be referred to as the set of
self-avoiding walk SAW conformations). In such a case the
procedure simply proceeds to enumerate for each conforma-
tion ¢ the potentials felt by its segments which we may col-
lect in u.. The Boltzmann weight gives the statistical weight
of this conformation, i.e., G.% ~exp(-u./kgT). Knowing
the positions of all the segments and the statistical weights, it
is then straightforward to recover all the distributions ¢, (r).
However, the procedure sketched for the SAW case is, for
molecules with more than ten segments, computationally too
expensive. Here we use a more approximate chain model,
namely the freely jointed chain (FJC). In FJC two consecu-
tive segments in the chain occupy neighboring sites on the
lattice, but segments further along the chain are allowed to
visit the same coordinate (remember there are multiple sites
at each coordinate). The excluded-volume problem is “re-
paired” somewhat by requiring that on average each site is
visited just once (incompressibility constraint). Within this
chain model there exists a propagator formalism to compute
the volume fractions efficiently. As this propagator formal-
ism is somewhat involved for branched molecules and be-
cause it has been presented many times before in the litera-
ture (see, e.g., Refs. [45,46]) we do not give more details
here.

Below we will typically focus on the thermodynamic re-
sponse when a proteinlike inclusion is inserted in a tension-
less bilayer or when two inclusions are brought in close
proximity. In such a system the chemical potential of the
lipids as well as that of water is fixed (otherwise the mem-
brane tension would change) and hence the grand potential )
is our characteristic function for this open system [47]. The
grand potential is found by subtracting all chemical potential
contributions from the free energy, i.e., Q=F-2,u;n,;. Note
that in this quantity the proteinlike inclusion is treated as a
local boundary condition, which effectively means that its
internal free energy characteristics are irrelevant for the
problem at hand.

It is well known [48,49] that Q=3 w(r)L(r), where L(r)
is the number of sites in the radial coordinate (in the cylin-
drical coordinate system) and w(r) is the grand potential den-
sity at coordinate r. Due to nonlocal binary interactions, w(r)
is not uniquely defined. Below we make a reasonable choice
to distribute the nonlocal interactions evenly over the sites
that are involved. By doing so, it is possible to compute, e.g.,
the local membrane tension [ ¥(x) in the 2G flat or ¥(r) in the
2G cylindrical coordinate system] by summing the grand po-
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water

FIG. 2. The molecules that are used in the calculations are
coarse-grained on a molecular level. The water molecules are rep-
resented by a cluster of five identical W-segments, while the free
volume is a single hydrophobic V segment. The most complex mol-
ecule in the system is the lipid. It has two tails, each consisting of ¢
hydrophobic segments C (representing a CH,- or a CH3-group). The
lipid head comprises two hydrophilic regions consisting of three
segments X which are spaced by two hydrophobic segments that are
identical to the tail segments.

tential density along the z direction, i.e., ¥(x)=3_w(z,x) and
similarly for the cylindrical coordinate system. We will use
these local tensions below [see Eq. (10)].

One of the primary quantities is the lipid (and water) con-
tribution to the grand potential when a proteinlike inclusion
is inserted. This insertion free energy is given by the differ-
ence between the grand potential with and that without the
inclusion in the bilayer. As the membrane is free of tension,
the reference grand potential is zero and thus we conclude
that the grand potential () is interpreted as the free energy of
insertion. It proves convenient to normalize this quantity by
the contour length of the cylindrical inclusion to obtain 7
=/27R, which may be called the line tension as it has the
dimension kgT/€ (with € the size of a lattice site, corre-
sponding to 0.2-0.3 nm [45]). In general the value of this
line tension is a function of the curvature of the inclusion,
Jp=1/R.

In the second part of this paper we turn our attention to
the free energy of interaction between two (flat) inclusions.
Again the proteinlike inclusions effectively are accounted for
by the boundary condition and the free energy of interaction
is found by the difference between the inclusion energy at
distance H computed to that at very large inclusion distances,
i.e., F(H)=Q(H)-Q(). In this geometry the grand poten-
tial is given per unit length of the inclusion (in the y direc-
tion) and we focus on the free energy of interaction normal-
ized to one proteinlike surface.

For the properties of the bilayer in the absence of inclu-
sions we refer to our previous paper [1] and below we only
briefly comment on the parameters used. All length param-
eters are given as dimensionless quantities (normalized to the
size of a lattice site £). The molecular architecture of the
molecules is presented in Fig. 2. The lipid molecules consist
of two hydrophobic tails of length (number of segments) ¢
coupled to a hydrophilic headgroup. The headgroup mimics
phosphatidylcholine, containing two hydrophilic fragments
of three segments spaced by two hydrophobic segments.

The relevant Flory-Huggins interaction parameters are
collected in Table I. In various studies we have worked to-
wards the set of parameters needed to calculate the properties
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TABLE 1. The Flory-Huggins nearest-neighbor exchange pa-
rameters for the various pairs of segments. A positive value means
that the net interaction is repulsive and a negative value represents
a net attractive interaction (with respect to the interaction between
identical segments).

Segment w C X v S E
E 0 2.0 0 2.3 0 0
S 2.0 -1.0 2.0 1.5 0

\% 2.3 1.5 23 0

X -0.5 2.5 0

C 1.1 0

w 0

of the lipid bilayer (without inclusions). It has been well
established that this set works very well for modeling lipid
bilayer membranes [42,43,45], some of the parameters are
based on experimental data, for example, the value for ywc
is based on the tail length dependence of the critical micelle
concentration of surfactants [50], while the value of 2.3 for
Xxwyv has been chosen in such a way that the calculated sur-
face tension of the VW interface is of the same order of
magnitude as experimentally determined values for the air/
water interface. The values of the other interaction param-
eters are to some extent arbitrary, since they cannot be deter-
mined directly from experimental data. We emphasize that in
the present paper the parameter set for the lipid bilayer is not
the subject of study; the key parameters here are the radius of
the inclusion, R, and its interaction with the lipid tails repre-
sented by xsc.

The value of 1.1 for ywc implies that C and W effectively
repel each other and this drives the self-assembly of the lip-
ids. On the other hand, the lipid headgroup contains six hy-
drophilic (X) segments that contribute to the stopping force
for self-assembly. The interaction between these segments
and water is chosen to be slightly attractive (xxw=-0.5),
while demixing of the lipid tails and heads is established
with XXC=2.5.

From experiments it is known that water is almost com-
pletely absent in the hydrophobic core of lipid bilayers
[51,52]. For this reason we have implemented water as a
small compact cluster of five segments as shown in Figure 2.
Such clusters of water will not easily partition in the core,
and as a result in this model the water content in the bilayer
core is less than 1 volume percent. Furthermore, we account
for some volume fraction of vacant sites (V) in the system.
The bulk fraction of free volume in the aqueous solution is
got{,:0.0Sl 396, which is fixed throughout all calculations.

The hydrophobic length of the inclusions, D, equals 8 and
the two hydrophilic end caps have a length of 1. See Fig. 3.
The parameters for the interactions of the end caps E with
the lipid headgroup segments, ygx, and with water, xgw,
have been set to zero for simplicity. We chose the interac-
tions of the rigid hydrophobic surface S with water and with
the hydrophilic headgroup segments to be unfavorable, i.e.,
Xsw=Xsx=2. The interaction of the rigid hydrophilic end
caps with the hydrophobic lipid tails must be unfavorable
and again for simplicity reasons the same value as the latter
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FIG. 3. Schematic representation of the insertion of inclu-
sions (top: side views, bottom: top views). The cylindrical two-
dimensional lattice (left) is used when a single inclusion is incor-
porated into the bilayer. When two inclusions are inserted in the
bilayer a two-dimensional lattice (right) is needed. The distance H
between the hydrophobic surface of these inclusions can be varied.
The hydrophobic mismatch Ad is defined as (D—d?)/Z, with D the
hydrophobic length of the inclusion and d? the hydrophobic thick-
ness of the unperturbed bilayer.

two was taken, i.e., Ygc=2. For the interaction with the va-
cancies Ygy=Xvw=Xvx=2.3, which implies that the V seg-
ments are strongly repelled by the polar segments. (Recall
that the interaction between C and V is also repulsive, i.e.,
Xcv=1.5.) Unless stated otherwise the interaction between
the hydrophobic surface of the inclusion and the hydropho-
bic tails is attractive, i.e., xsc=—1.0. The interactions of the
hydrophobic surface with the V units are in between the
interactions with the hydrophilic and the hydrophobic seg-
ments, i.e., ygy=1.5.

In Fig. 4 an example is given of a segment density profile
across a bilayer composed of lipids with tail length r=18. It
shows that water solvates the headgroup but not the tails, that
the free volume V partitions more in the bilayer than in the
aqueous solution, that the size of the bilayer headgroup re-
gion is comparable to the hydrophobic region and that the
segment density in the core of the hydrophobic region is

1
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FIG. 4. Volume fraction profile across a tensionless planar lipid
bilayer with tail length r=18. The volume fraction profiles of the
tail and the head segments are depicted, as well as those of free
volume and water.

PHYSICAL REVIEW E 81, 021915 (2010)

homogeneous. From our previous results [1] we know that in
this model the hydrophobic bilayer thickness d?, the area per
lipid molecule a,, and the elasticity moduli of a tensionless
bilayer all show a linear dependence on the lipid tail length z.
For the unperturbed bilayer d? is obtained from the volume
fraction profile of the C segments as the distance between the
positions where the volume fraction equals 0.5. For =18 the
hydrophobic thickness dg amounts to 10.8 (corresponding to
about 3 nm), while the area per molecule a, is 8.38
(0.6-0.7 nm?). Many features in Fig. 4 are quantitatively in
line with molecular dynamics (MD) results as has been
shown a number of years ago [45].

The hydrophobic mismatch between the inclusion and the
lipid bilayer is defined as Ad=(D—d")/2, which is schemati-
cally depicted in Fig. 3. For a given value of D, the hydro-
phobic mismatch is linear in ¢. For example, for D=8 (which
is used throughout this paper): Ad=2.57-0.218t.

In our previous paper [1] we incorporated a cylindrical
inclusion of radius R=6 in a lipid bilayer and varied its hy-
drophobic length D. The line tension was found to have a
parabolic dependence on the hydrophobic mismatch between
the inclusion and the bilayer,

T= W(Ad - Admin)2 * Tmin (5)

with W the width of the parabola, 7, the minimum line
tension and Ad,;, the “optimal” hydrophobic mismatch, i.e.,
the mismatch of the lowest free energy. We showed that an
increase in D only affects 7, significantly, which can be
attributed to the increased interaction area between the inclu-
sion’s hydrophobic surface and the bilayer.

III. RESULTS AND DISCUSSION
A. Interaction between the inclusion and the lipid tails

There are little data available on the role of the contact
interaction between the hydrophobic part of transmembrane
structures and the lipid tails. In theoretical modeling it is
typically assumed that the lipids adjacent to an inclusion
experience steric hindrance, while specific interactions are
not considered. Because of steric hindrance the lipids around
the inclusion lose part of their conformational entropy com-
pared to the situation in the unperturbed bilayer. As a conse-
quence the lipid tails will to some extent avoid the surface of
the transmembrane structure. Calculations show that the tail
segments compete with the V units for the sites on the hy-
drophobic part of the inclusion’s surface. This means that if
the tail segments deplete from the inclusion, the V units take
their place.

In contrast to our model transmembrane objects, the sur-
face of a real transmembrane structure like a peptide or pro-
tein is not smooth and rigid, but molecularly rough with
several more or less mobile groups attached to it, which may
have different affinities to the lipid tails. Therefore, we
should account for the somewhat unrealistic conformational
entropy loss suffered by the tails in our model and this can be
done through the contact interaction between tail segments
and surface of the rigid object. This issue is well known in
polymer adsorption theory, where the concept of a critical
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FIG. 5. (Color online) Schematic two-dimensional illustration of
the entropy loss of dimers adjacent to a rigid surface. Having the
position of the black segment of the dimer fixed, in bulk (left) the
white segment can obtain four different positions, whereas adjacent
to a rigid surface (right) it can only sit at three different positions.

Thus, the bond between the two segments has lost conformational
entropy when the dimer is near a surface.

adsorption energy is introduced, i.e., the enthalpy that ex-
actly counterbalances the entropy loss near the surface
[53,54]. To give an idea of the magnitude of this critical
adsorption energy, in Fig. 5 all possible conformations of
dimers in a two-dimensional system are shown, keeping the
position of one segment fixed. In the bulk there are four
possible positions for the other segment, whereas near the
surface there are only three. Generally, the entropy loss for a
bond between two segments near a surface, implying that
one out of Z directions is blocked by the surface, amounts to
AS/kg==In(1-1/Z)=1/Z=N\,. As a segment C next to the
inclusion has A, contacts with S, the exchange with V gives
an energy effect, Au/kgT=N;(Xsc—xsv). This means that
Xsc— Xsy has to be approximately —1 in order to compensate
for this entropic loss. When the enthalpic contribution is
larger there will be an excess of C near the surface, and when
it is lower C will deplete. However, this simple analysis does
not account for the fact that in the lipid bilayer the tails are
strongly aligned in the z direction, parallel to the inclusion.
We therefore have no accurate evaluation of the true critical
adsorption energy. In particular we expect this also to depend
on the hydrophobic mismatch.

In Fig. 6(a) the volume fraction profile of the lipid tails
next to a rigid rod of radius R=6 and hydrophobic length
D=8 has been plotted for three different values of the inter-
action parameter Ygc. The hydrophobic mismatch Ad=
—0.12. The profile on the top where ygc=-2 shows an in-
crease in tail density adjacent to the inclusion, represented by
the dark area. Furthermore, it can be seen that the bilayer
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FIG. 6. (Color online) (a) Two-dimensional volume fraction
profiles of the lipid tail segments near a rigid object (on the left side
of each plot), for a hydrophobic mismatch Ad=-0.12 (tail length
t=12) and different values for the interaction parameter ysc. The
lipid tail volume fraction increases from white to black. (b) The
deviation of the average tail segment density at r=R+1 from that at
r>R, (A¢c), as a function of ygc for various values of Ad as
indicated.

PHYSICAL REVIEW E 81, 021915 (2010)

thickness d,; in the first layers next to the inclusion is larger
than for the unperturbed bilayer. These two features indicate
that for this case the enthalpic contribution to the insertion
free energy is larger than the conformational entropic loss. In
the profile for xg5c=-0.5, the tail density ¢- and bilayer
thickness d; are approximately constant, suggesting that in
this case the favorable interaction between the C segments
and the inclusion counterbalances the entropic loss of the
lipid tails. In the profile at the bottom, where xgc=1, there is
no attractive SC interaction to compensate for the entropic
loss, resulting in a decrease in d; and ¢¢ near the inclusion.

Since the effect of insertion of the object is reflected in a
complicated way in both the thickness and the density of the
bilayer, it is difficult to accurately determine the critical
value of xgc and we need an operational definition. For this
we have evaluated the (z-averaged) deviation in the tail seg-
ment density adjacent to the object (i.e., for r=R+1) from
that in the undisturbed bilayer, given by

z=D/2

(Apo)=7 2 [ec(R+1.2)—oc(r>R.2)]  (6)
z==D/2

We now define the critical value x. as the value of ygc for
which (A@c)=0. In Fig. 6(b) we present (A¢c) as a function
of xsc for several values of Ad. As expected (A¢) decreases
when xgc increases, i.e., with decreasing attractive interac-
tion, and x5 is a function of the hydrophobic mismatch Ad.
Further analysis reveals that there is a linear relation between
Xsc and Ad, for the chosen set of parameters given by xg¢
=-0.23+1.24Ad. Thus, for Ad=0, x5-—xsy amounts to
—1.73. This is significantly more negative than —1, the above
mentioned critical adsorption value that is found for poly-
mers adsorbing on a rigid wall. For a positive value of Ad,
the bilayer thickness adjacent to the inclusion is larger than
d?, and therefore the average tail density is increased with
respect to the unperturbed bilayer. This increase in tail den-
sity opposes the effect of entropic loss of the tails near the
rigid wall and as a consequence xsc has to be less attractive
to keep (Agc)=0. In the case of a negative Ad the situation
is just the opposite, i.e., the bilayer thickness adjacent to the
inclusion is decreased and this results in an extra depletion
contribution (since the C segments also avoid contact with
the hydrophilic end caps of the inclusion) on top of the con-
formational entropic loss.

Obviously, the interaction parameter ysc influences not
only the bilayer structure but also the free energy of insertion
of the inclusion into the bilayer. As mentioned already the
SCF method allows to straightforwardly computing the free
energy of insertion () and the line tension 7. In Fig. 7(a) the
strong dependence of the minimal line tension 7, [defined
in Eq. (8)] on xgc is shown, for R=6. To a good approxima-
tion 7, is proportional to ysc and increases with 2.03kgT
per unit of xgc. This means that the total insertion energy
Q=27R7 increases with no less than 76.5kgT when xsc is
increased with one unit. From this we can understand that for
integral membrane peptides and proteins in biological sys-
tems, accurate matching of the amino acid residues embed-
ded in the hydrophobic core of the lipid bilayer with respect
to their affinity to the lipid tails, is of crucial importance to
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FIG. 7. The dependence of (a) the minimal line tension 7,,;, and
(b) the hydrophobic mismatch Ad,;, at minimal line tension 7,,;, on
the Flory-Huggins interaction parameter ysc for the interaction be-
tween the hydrophobic part of the inclusion and the lipid tail
segments.

avoid excessively large values of the insertion free energy.
Indeed most of these residues should have a hydrophobic
character and in line with experimental data [11-13,55] the
number and position of polar residues largely determines
whether a peptide or protein is inserted in the bilayer or not.
It has been found that direct protein-lipid interactions are
crucial during translocon-mediated membrane insertion
[13,56].

The small deviation from the linear relation between 7,
and ygc that can be seen in Fig. 7(a), must be attributed to
entropic effects, i.e., there are small changes in the packing
or the average tilt of the lipid tails adjacent to the inclusion.
The dependence of the hydrophobic mismatch at 7,;,, Adpin,
on the adsorption energy is presented in Fig. 7(b). It is of
interest to mention that Ad,,;, increases more than linear with
Xsc especially for ysc>0. This exemplifies the nontrivial
variations in the lipid distribution around the inclusion.

B. Radius of the inclusion

Here we will address the effect of the radius of the cylin-
drical object on the surface tension profile of the lipid bilayer
as well as on the free energy of insertion. First we will
present the membrane tension 7y as a function of distance
from the inclusion. It is found that in the elastic region, i.e.,
for distances from the inclusion larger than d@, the results can
be fitted by the equation

v(Ar)=A exp(— %)sin(Zﬂ'Ar 5) , (7)
where Ar=r—R, i.e., the distance from the surface of the
inclusion. This equation corresponds to a damped wave with
decay length & and wavelength \. A is the extrapolated maxi-
mum amplitude at the inclusion’s surface. In the limit Ar
— o the bilayer is unperturbed and tensionless, i.e., the sur-
face tension y=0. Near the inclusion y>0 if the bilayer
thickness and lipid tail density are reduced with respect to
the unperturbed bilayer and y<<0 if the bilayer thickness and
the lipid tail density are larger than the unperturbed bilayer.
At this point there may be a concern that a nonzero local
surface tension of the membrane is mechanically unstable.
However, the local bending of the lipid monolayers balances
the lateral tension gradients such that stability is indeed
maintained.
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FIG. 8. The maximum amplitude A (in units 10*kzT¢~2) of the
oscillations in the membrane tension as a function of the radius R of
the inclusion, for Ad=0.86(r=8).

From our calculations it is found that both the wavelength
N\ and the decay length ¢ do not depend on the radius of the
inclusion R. These quantities are solely determined by the
elastic properties of the bilayer. In addition, the offset of the
oscillation & does not depend much on R either. The only
parameter that shows a significant dependence on R is the
extrapolated maximum amplitude A as is shown in Fig. 8.
The results shown are for a hydrophobic mismatch Ad
=0.86, i.e., for a tail length r=8, for which case the variation
of y with Ar is relatively large. The trends observed, how-
ever, are the same for other values of Ad. When the radius of
the inclusion is increased, the amplitude A goes to a limiting
value for a flat surface. These results are in agreement with
those of Lagiie et al. [28,29], who showed that the long-
range oscillations become more pronounced when the inclu-
sion’s radius is increased.

Our calculations further show that the total insertion en-
ergy () depends almost linearly on R. This is easily explained
since the interaction area between the inclusion and the bi-
layer is proportional to R. However, there is a small devia-
tion from this linearity. This implies that there is a small
curvature dependence of 7, which again is related to small
changes in the conformations of the lipids around the inclu-
sion. It is possible to expand 7 up to a second order Taylor
series in the curvature J,(=1/R)

ar (927'2 ky
J)=1+_—J,+ Jo=10)—koJoJ,+ =J,. (8
)=t Ty =0 ~kadody + 5, ®

This equation defines the curvature modulus k, as the second
derivative of (J,) at J,=0, and J;, is the curvature where the
line tension has an extreme (either a maximum or a mini-
mum depending on the sign of k,).

In Fig. 9 we present [(J,)—7(0)]/J, as a function of J,
for several values of the hydrophobic mismatch Ad. The
slope of the lines corresponds to k,/2 and appears to be
small and positive, i.e., in the range of 0.1 to 0.2. The inter-
cept is given by —Jyk, and is negative showing that J, is
positive and of order unity. From this it can again be con-
cluded that 7 does not depend strongly on J, and, in addition,
that 7(0) is a reasonable measure for the normalized free
energy of insertion even for low values of R. We will use this
result below when we consider the interaction between two
transmembrane objects in the bilayer.
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FIG. 9. The relation between (7(J,)—(0))/J, as a function of
the curvature J. i of the inclusion, with 7 and Iy in units kg7/¢ and
¢!, respectively. The slope gives information on the curvature
modulus k,.

C. Lipid-mediated interaction between transmembrane objects

To obtain information on how objects in lipid bilayers
interact with each other is a hard task. The analysis of the
interaction between inclusions with radius R in the bilayer
generally calls for a three-gradient SCF analysis. For the
time being this exceeds our computing facilities. For the
limit of R— % however, the problem can be tackled with a
two-gradient SCF analysis. The free energy of interaction in
this case is given per unit length of the inclusion. Above we
showed that the effects of the radius R on the bilayer pertur-
bations and the line tension are relatively small. For this
reason we believe we can get useful information from such a
two-gradient analysis of the lipid-mediated interaction be-
tween two inclusions. This is supported by studies in which
the interaction between objects of different sizes has been
investigated [36,42]. We will come back to this later in this
section.

In studying the lipid-mediated interaction we will once
again consider the effects of the hydrophobic mismatch Ad
and the contact interaction between the hydrophobic part of
the inclusion and the lipid tails, characterized by ysc.

The interaction free energy F for a particular distance H
between the objects is plotted in Fig. 10 for two different
cases, to which we will return below. In the literature various
contributions of the free energy of interactions have been
identified and discussed, ranging from several short-range
contributions, such as depletion-induced interactions, lipid
bridging, lipid packing, and less specified long range inter-
actions [57]. We identify three different regimes, each having
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its own length scale in the interaction profile. First, there is
the elastic interaction F*, which results of the overlap of the
inclusion-induced bilayer perturbations in the elastic region
and which is dominant at distances H>>d?. In this regime the
free energy of interaction F(H) manifests itself as an expo-
nentially decaying oscillation and can be fitted using an
equation similar to Eqn (10). At the intermediate length
scale, i.e., 2 ag<H <d0, a second contribution becomes
evident, namely a repulsive interaction F¢, which is in this H
range to a good approximation found by subtracting F¢ from
F. In all cases we found that F°(H) decays approximately
exponentially with H as illustrated in Fig. 10. This interac-
tion contribution is a consequence of the confinement of the
lipid tails by the inclusions. For very small separations be-
tween the inclusions, i.e., H<2\a,, the situation becomes
more complex. We define the contribution F*(H)=F(H)
—F¢(H)-F°(H). The nature of this contribution strongly de-
pends on the interaction of the tails with the surface of the
inclusions. It can either reflect a depletion-induced attractive
interaction [58] or a strongly oscillating and exponentially
decaying interaction due to structural forces.

Two rather extreme cases of interaction profiles are shown
in Fig. 10. Both graphs show F as a function of H and also
the contributions F*, F¢, and F* are depicted. Figure 10(a) is
for the case that there is almost no hydrophobic mismatch,
i.e., Ad=-0.12, and no effective lipid tail-inclusion interac-
tion, i.e., xsc=Xsv- It shows a repulsive barrier at intermedi-
ate separation and a depletion-induced attraction at short
separation. A similar interaction profile has been found in
several other studies on lipid-mediated interaction without
mismatch and effective tail-inclusion interaction [22,28,36].
Figure 10(b) shows the case of a strong attractive tail-
inclusion interaction, i.e., ysc=—1, and a large positive mis-
match, i.e., Ad=0.86. In this case strong oscillations in F are
present in the short-range regime. This situation has not been
discussed before and it exemplifies the importance of the
tail-inclusion interaction at short separations. Below, we dis-
cuss the findings for the three different length scales sepa-
rately.

1. Long-range interaction

On the longest length scale the lipid-mediated interaction
is a consequence of the overlap of the structural bilayer per-
turbations. These perturbations result in a local variation in,

2 2 T
Fi e —F F
e 7T T 20 T N F
-——- -= F
r~ e T . T F
L ol | IR R S | L
H 15 20 10 H 15 20

FIG. 10. The total interaction free energy F (in units of kzT/€) between two inclusions (with R— ) as a function of their separation H.
The interaction energy is the result of three contributions: a short-range segmental contribution F*, an intermediate conformational contri-
bution F*¢ and a long-range elastic contribution F*. (a) For the case of a small hydrophobic mismatch (Ad=-0.12) and no effective interaction
between lipid tails and inclusion (ysc=xsy). (b) For a large mismatch (Ad=0.86) and attractive interaction (ygc=-1).
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FIG. 11. The interaction energy F (in units
kgT/€) between two rigid flat inclusions as a
function of the separation between their surfaces
H (for H>6). (a) For several degrees of hydro-
phobic mismatch, i.e., several values of Ad as
indicated; ysc=—1. (b) For various values of ygc
(r=12 and Ad=-0.12}.

e.g., the bilayer thickness d;, or the area per lipid molecule a,
and have the same functional shape as the surface tension
v(r) given in Eqn (10). As mentioned before, the wavelength
\ and the decay length ¢ of these perturbations are set by the
structural and elastic properties of the bilayers. Figure 11
shows the energy of interaction for H>dj, where F°(H)
~F(H). As the force f=—dF/JH, the result shows that the
interaction between the inclusions is attractive or repulsive
depending on the distance H.
All the profiles shown in Fig. 11 can be fitted by

F(H)=AF exp(— gp)sin[ZW(H;—FéF”. 9)

Here 6" is the offset of the interaction profile and N\ its
wavelength. The extrapolated maximum amplitude A" at H
=0 shows the same dependence on Ad and ysc as the ampli-
tude A in Eq. (10). For example, for ygc=—1, both A” and A
show a minimum at Ad=-0.65. Furthermore, the wave-
length A7 and decay length £ equal those that are found for
the local surface tension variations expressed by Eq. (10).
This indicates that they have the same origin. The oscillatory
free energy curve may be rationalized using the elastic length
scale concept [19,34]. Whether attraction or repulsion is
found at some distance H depends on the match or mismatch
of integer number of elastic lengths between the surfaces.
The elastic length is a characteristic bilayer property in the
elasticity theory and it gives information on the decay of
bilayer perturbations. It is defined as

0y2 1/4
6= [%] (10)

a

with k. the bending modulus and k, the area compression-
expansion modulus.

In Fig. 11(a) the variation of F with the hydrophobic mis-
match Ad is shown. The hydrophobic mismatch determines
the position of the first maximum and minimum in F(H). The
amplitude of the oscillation decreases exponentially with H
and there is a parabolic dependence on Ad. In Fig. 11(a) the
largest maximum is found for Ad=0.86, amounting to ap-
proximately 0.12kg7/€. This implies that for <€
=0.2—-0.3 nm this energetic barrier is large enough to amply
overcome the thermal energy (approximately lkg7), i.c.,
more than sufficient to prevent the inclusions from coming
closer to each other, even for inclusions of a biologically
relevant size. (This may be also the case for Ad=0.42). Com-
pared to the first maxima in F(H), the first elastic minima are
relatively small. However, if such a minimum appears at
relatively small H, it still may be deep enough to keep the

inclusions at this distance from each other. This is for ex-
ample the case for Ad=-0.49, where the minimum in inter-
action energy is about —0.04kg7/ €.

In Fig. 11(b) F(H) is depicted for several values of ygc at
a relatively small hydrophobic mismatch, i.e., Ad=-0.12.
Just like Ad the interaction parameter ygc affects the posi-
tions and heights or depths of the maxima and the minima in
F(H). For ygc=—4 the height of the first elastic maximum is
approximately 0.04kg7/€, which can in some cases be high
enough to prevent inclusions from approaching each other
closely. Thus even when the mismatch is small the elastic
interaction can provide an effective energetic barrier. The
first elastic minima in the studied cases are probably too
small to accommodate the inclusions at this distance from
each other.

In conclusion, the elastic maxima and minima in the in-
teraction energy can be large enough to play a role in the
organization of integral membrane structures in biological
systems, even in the case of a relatively small hydrophobic
mismatch. They may, for example, prevent the aggregation
of membrane proteins and contribute to the ordering of mem-
brane structures with (many) lipids between them.

2. Intermediate-range interaction

For intermediate distances, i.e., 2ay<H <d2, the inter-
action free energy F cannot be described only by F*. In this
region another contribution must be taken into account,
namely a repulsive interaction that decreases exponentially
with H. This repulsion can be attributed to the loss of con-
formational entropy of the lipid tails as a consequence of the
confined space between the two inclusions. It has also been
discussed by May and Ben-Shaul [22], who used a simple
director model as well as a molecular-level mean-field
model. They showed that the interaction profile is not af-
fected by constraints on the headgroup distribution. In some
cases this repulsive contribution results in a barrier that is
large enough to prevent the inclusions from approaching
each other closely.

As mentioned above, to retrieve this intermediate-range
interaction F(H) we subtracted F¢(H) from F(H) in the in-
termediate distance range. The result can be fitted by

F(H) =A° exp(— H/&). (11)

Here A€ is the extrapolated amplitude at H=0 and & the
decay length. The decay length amounts to approximately
two lattice sites. Within the accuracy of the determination of
& we did not find a dependency on the contact interaction
Xsc or on the tail length 7.
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FIG. 12. The short-range interaction energy
F*® (in units kgT/{€). (a) For different values of Ad
with ygc=-1. (b) For several values of ygc with
Ad=-0.12.

3. Short-range interaction

In Fig. 12 the short-range interaction energy F*(H) is plot-
ted. This interaction is defined as F*(H)=F(H)-F¢(H)
—F°(H) where the profiles of F°(H) and F°(H) have been
extrapolated to H=0. Figure 12(a) shows that F* is not af-
fected by the hydrophobic mismatch. In contrast, ysc has a
strong effect on F*.

The structural forces in this short range of interaction can
lead either to attraction or to an oscillatory interaction, de-
pending on the value of ysc [Fig. 12(b)]. A monotonic attrac-
tive structural force occurs if there is no affinity between the
inclusion’s surface and the lipid tails, equivalent to the
depletion-induced attraction for a system of colloidal par-
ticles in a solution of nonadsorbing polymers as first de-
scribed by Asakura and Oosawa [58]. This result was also
obtained from Monte Carlo simulations [36]. If there is a
strong affinity between lipid tails and inclusion, we observe a
pronounced oscillatory interaction curve which decays rap-
idly with distance and results from the finite compressibility
of the lipid core of the bilayer. Similar structural forces are
seen for polymer melts confined between to solid surfaces.
One of the consequences is that when the separation between
the inclusions becomes small, a monomolecular lipid layer
can stay in between them. Whether this will be the case
depends entirely on ysc. This means that the contact interac-
tion not only determines whether a peptide or protein can be
inserted in a lipid bilayer or not, but that it is also important
to understand how proteins can pack densely in a lipid bi-
layer.

Due to computational reasons we have focused above on
the interaction between two flat walls, mimicking large in-
clusions. This approximation is valid for distances H be-
tween the inclusions that are small compared to the radius of
the inclusions. To assess the implications of this approxima-
tion for separations comparable to R and larger, we refer to
the effects of R on the perturbations caused by a single object
in the bilayer membrane as described earlier in this paper.
Our results show that R primarily determines the amplitude
of the oscillatory perturbation (in the membrane tension),
which increases by about a factor of 2 going from very small
R to R=30 where a plateau is reached (see Fig. 8); R does,
however, not affect the wavelength or the decay length of the
perturbation. These are set by the structural and elastic prop-
erties of the bilayer. In other words, increasing R does not
change the shape of the perturbation of the bilayer, only its
intensity and this effect is limited and levels off. Therefore,
we expect that using the simplification of two rigid walls
overestimates the long-range elastic interactions between the
inclusions less than an order of magnitude. In case the radius

of the inclusions is small compared to the short and interme-
diate ranges of interaction defined here, one can assume that
the inclusions have a square shape (from a top-view perspec-
tive), e.g., with (effective interaction) lengths L for each side.
One can then estimate the total free energy of interaction per
inclusion with product F(H)L.

Another approximate route, which we here do not elabo-
rate on, is to place a cylindrical inclusion with a fixed radius
R at the center of a Wigner-Seitz cell. The size of the cell is
dictated by the average spacing between inclusions, and the
central inclusion feels the surrounding ones by way of the
reflecting boundary condition. This approach was used by
Dan e al. [34]. Ideally, however one would like to solve the
problem of many inclusions, floating in a bilayer, a typical
three-gradient problem. It is not excluded that with increas-
ing computational capabilities such problems may come into
reach of SCF modeling in the near future.

From the above it follows that the free energy of interac-
tion of inclusions is a nonmonotonic function of the distance
between them. The interactions have been decomposed into
various contributions and are linked to the perturbation of the
structure of the membrane as a function of the distance away
from the inclusion. Nonmonotonic interaction energies have
been predicted on the basis of other models before and hence
are well established. Direct comparison with previous pre-
dictions (see introduction) can only be done on a qualitative
level because different authors use different models (using
different normalizations) and include different contributions
(for example the spontaneous curvature of the lipids and the
shape of the inclusion [27,33,34]). The current analysis
clearly confirms earlier findings that the elastic length, as
given by Eq. (10), is important for understanding the inter-
actions on a relatively large separation distance. In addition
we showed that at intermediate length scales the perturbation
of lipid conformations plays a role and finally the contact
interactions of lipids with the inclusions are important as
well. In this context, we address the question how realistic
the model used is and, in particular, what that means for the
interpretation of the results in terms of the interaction be-
tween real integral membrane biomolecules such as proteins.
The crucial point is of course the assumption that transmem-
brane structures can be modeled as smooth rigid objects. As
mentioned before, real proteins are flexible to some degree
and have a more or less rough surface with different groups
sticking out. We already indicated that therefore in the model
the loss in conformational entropy of the lipid molecules
near the inclusion is exaggerated, but this can be neutralized
by using a large enough net attraction between the lipid tails
and the surface of the inclusion, tunable through the interac-
tion parameter ysc. In addition, however, we expect that the
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short-range oscillatory structural forces between inclusions
are more pronounced in the model than in reality, since in the
model at short interaction distances H the lipids are confined
between two flat and rigid walls. In contrast to this, in bio-
logical systems transmembrane structures are able to adjust
their conformation to some extent in response to stress in the
lipid bilayer.

Overall, we assess that the model gives good insight in
the physical nature of the interactions between membrane-
spanning inclusions in lipid bilayers and in the importance of
factors like the elastic properties of the lipid bilayer, hydro-
phobic mismatch, and compatibility of lipid tails and the
inclusion’s surface.

IV. CONCLUSIONS

We modeled the lipid bilayer structure around cylindrical
membrane-spanning objects, mimicking structures such as
transmembrane proteins and peptides, using a molecular
level self-consistent field theory. In this paper we focused on
the structural changes in the bilayer as a function of the
affinity between the lipid tails and the inclusion and the ef-
fect of the inclusion’s radius. Furthermore, the lipid-
mediated interactions between two proteinlike inclusions
were investigated.

The contact interaction with the lipid tail segments, char-
acterized by the Flory-Huggins nearest-neighbor exchange
parameter ysc, determines to a large extent the total energy
of inserting the object into the bilayer. Furthermore the pack-
ing of the lipid tails adjacent to the object and the degree of
perturbation of the bilayer are affected by this interaction. As
a consequence the energetically most favorable hydrophobic
mismatch depends also on this short-range interaction. From
this it follows that for transmembrane peptides and proteins
in biological systems, accurate matching of the amino acid
residues embedded in the hydrophobic core of the lipid bi-
layer as well as the length of the hydrophobic part of the
transmembrane structure, is of crucial importance to avoid
excessively large values of the insertion free energy.

The radius of the inclusion R has only a minor effect on
the density of the lipids directly adjacent to it. The presence
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of the transmembrane object leads to damped oscillations in
the bilayer tension as a function of the distance from the
object, of which the wavelength and decay length are not
affected by R. Only the amplitude of the oscillations in-
creases with the size of the object. Also the line tension of
the bilayer around the inclusion is hardly affected by R.

The limited effect of the radius of the inclusion on the
bilayer perturbations made it possible to simplify the model-
ing of the lipid-mediated interactions between two trans-
membrane objects to the case of R— cc. The results can be
broken down into three contributions on distinct length
scales. When the distance between the objects is larger than
approximately the bilayer thickness, an exponentially decay-
ing oscillating interaction profile is found, of which the
wavelength and decay length correspond to the perturbations
in membrane tension mentioned above and that strongly de-
pends on the hydrophobic mismatch and tail-inclusion affin-
ity. Depending on the specific parameters, this interaction
can easily be strong enough to play a role in, e.g., the orga-
nization of proteins and peptides in biological membranes.
At intermediate distances the conformational restriction of
the lipid tails plays an important role resulting in a repulsive
interaction. When the transmembrane objects approach each
other closely, say closer than the average distance between
the lipid molecules in the undisturbed bilayer, structural
forces becomes important. If there is no strong attractive
tail-inclusion interaction, a depletion-induced attraction be-
tween the transmembrane objects is found. Otherwise, an
oscillating interaction is found which is due to the finite
compressibility of the core of the lipid bilayer.

A basic assumption in this study is that transmembrane
structures in biological membranes can be modeled like rigid
cylindrical objects. We assess that this does not significantly
affect the conclusions, although the short-range structural in-
teractions as predicted by the model are probably much more
pronounced than in reality. Despite the simplifications made,
computational models as used here are valuable tools for
gaining a better insight on the influence of membrane-
spanning proteins and other molecules on the lipid bilayer
structure and, ultimately, the organization of biological mem-
branes.
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